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The transition of homogeneous turbulence from an initially isotropic three- 
dimensional to a quasi-two-dimensional state is simulated numerically for a 
conducting, incompressible fluid under a uniform magnetic field B,. The magnetic 
Reynolds number is assumed to be small, so that the induced fluctuations of the 
magnetic field are small compared with the imposed magnetic field B,, and can 
be computed from a quasi-static approximation. If the imposed magnetic field is 
strong enough, all variations of the flow field in the direction of B, are damped 
out. This effect is important e.g. in the design of liquid-metal cooling systems for 
fusion reactors, and the properties of the final state are relevant to atmospheric 
turbulence. An extended version of the code of Orszag & Patterson (1 972) is used 
to integrate the Navier-Stokes equations for an incompressible fluid. The initial 
hydrodynamic Reynolds number is 60. The magnetic interaction number N is 
varied between zero and 50. Periodic boundary conditions are used. The resolution 
corresponds to 323 points in real space. The full nonlinear simulations are com- 
pared with otherwise identical linear simulations; the linear results agree with 
the nonlinear ones within 3 % for about one-fifth of the large-scale turnover time. 
This departure is a consequence of the return-to-equilibrium tendencies caused 
mainly by energy transfer towards high wavenumbers. The angular energy 
transfer and the energy exchange between different components are smaller, and 
become virtually zero for large values of N .  For N z 50 we reach a quasi-two- 
dimensional state. Here, the energy transfer towards high wavenumbers is 
reduced for the velocity components perpendicular to B, but relatively increased 
for the component parallel to B,. The overall behaviour is more similar to three- 
than to purely two-dimensional turbulence. This finding is of great importance for 
turbulence models of the atmosphere. The realization of a purely two-dimensional 
state does not seem to be possible for decaying turbulence. The magnetic field 
causes highly intensified pressure fluctuations, which contribute to the re- 
distribution of the anisotropic Lorentz forcing. 

1. Introduction 
The impact of a strong uniform magnetic field on initiaIly isotropic and homo- 

geneous turbulence is studied by direct spectral simulation. The transition 
towards a two-dimensional state is investigated with special emphasis on the 
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effects of nonlinearities and pressure fluctuations. We consider a Newtonian 
incompressible fluid with constant density p,  kinematic viscosity v, and magnetic 
diffusivity 7. The magnetic Reynolds number is 

Rm, EE vL/r. (1) 

v is the root-mean-square (r.m.s.) velocity, and L is the integral length scale 
(defined as the integral over the normalized longitudinal velocity correlation 
function: see e.g. Batchelor 1959). It is assumed that 

RmL< I. (2) 

Thus the fluctuations b around the mean (imposed) magnetic field B, are small 
((bl .g I&\), and can be computed from a quasi-static theory, deduced, e.g., by 
Roberts (1967, sQ2.1, 5.4). I n  this case, the Lorentz force F induced by the 
magnetic field B becomes a linear function of the velocity field U. 

The numerical method is as developed by Orszag & Patterson (1972) and 
extended by Schumann & Patterson (1976a). The only change incorporated in 
the present scheme is the inclusion of the Lorentz force. The three-dimensional 
Navier-Stokes equations are solved numerically, using a Galerkin approximation 
based on a Fourier-spectral representation of the flow field u(x,t). (x is space 
position, t time.) Periodic boundary conditions are imposed on the sides of a cubic 
box of side length &ox, so that u(x, t )  has the discrete Fourier representation 

u(x,t) = C Q(k,t)exp[ik.x], i = 4-1. (3) 
all k 

k = k,,,M is the wavenumber vector, and M is a unit vector. The smallest 
non-zero wavenumber has the magnitude kmln = 27T/Lbox. Only the modes 
Q(k, t )  with Ikl < k,,, are retained for the numerical procedure. In  this study, 
kmax/kmin = (242)i M 15-6. This spectral truncation determines the maximum 
hydrodynamic Reynolds number 

Re, = vL/v (4) 

that may be used for accurate simulations. The present numerical simulations 
are for Re, M 60. 

Assumption (2) is valid for most laboratory and technical flows, since the 
magnetic Prandtl number 

is generally very small for liquid metals (e.g. M lo-' for mercury, and M for 
sodium: Roberts 1967). Without this assumption, the magnetic field would have 
to be determined simultaneously with the velocity field by integrating Maxwell's 
equations. This doubles the number of degrees of freedom, and introduces com- 
putational difficulties (e.g. reduced time steps owing to instabilities triggered by 
A l v h  waves: Roberts 1967). Although such an approach is possible and has 
been carried out (for Pm M 1) by Pouquet & Patterson (1976), it would be 
inappropriate for small magnetic Reynolds numbers. 

As discussed by Lehnert (1955), Moffatt (1967), Moreau (1968), Kit & Tsinober 
(1971) and others, a strong magnetic field with R,m < 1 tends to eliminate velocity 

Pm = v/r  = Rm,/Re, (5) 
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gradients in the direction of n = B,/IB,I. This tendency eventually results in a 
final ‘two- dimensional’ state, where all variables are independent of the n 
co-ordinate. This effect is important e.g. in the design of liquid-metal cooling 
systems for fusion reactors. It results in reduced turbulent heat transfer and 
friction. It is assumed that this effect also permits the laboratory experimental 
study of large-scale atmospheric turbulence, which is believed to be best approxi- 
mated by a two-dimensional turbulence theory. As yet, such theories (e.g. that 
of Leith 1968) can be checked in a conclusive manner only against numerical 
experiments such as those of Lilly (1971) and Herring et al. (1974). 

However, the two-dimensional state can be reached only if the Lorentz force 
and the resulting damping are strong enough to overcome the inherent instability 
of the turbulent flow and the resultant energy transfer due to the inertial (non- 
linear) terms. The latter tends to effect a return to the three-dimensional state, 
and thus to isotropy. (See e.g. Schumann & Patterson 19763.) The ratio between 
the magnetic damping and the inertial terms is usually (Moffatt 1967) character- 
ized by the interaction number 

r is the electrical conductivity 
N = g B i L / ( p ~ ) .  (6) 

g = l / ( w o ) ,  (7) 

and po is the magnetic permeability (Roberts 1967). It is expected that a critical 
value N, exists such that for N > N, the Lorentz force is strong enough to push 
the flow completely into the two-dimensional state. Also, one would like to know 
the value Nmin that N may not exceed if departures from isotropy are to be 
negligible. These two values can be determined only if the nonlinear terms are 
known. 

In  all previous studies the nonlinear terms have been neglected, excepting 
only qualitative considerations (Moffatt 1967; Moreau 1968). Furthermore, only a 
few experimental investigations are known (as e.g. that of Volkov 1973), and 
they suffer from inhomogeneities of the applied magnetic field and from the 
limited number of measurable quantities. It appears that the quantitative 
effects of the nonlinear terms are virtually unknown. Even their qualitative 
importance has not yet been conclusively demonstrated. 

The present contribution describes the results of several ‘numerical experi- 
ments’. Each one is a flow simulation starting from the same initial velocity 
field, which is Gaussian random, at time t = 0. During 0 < t < t,, we assume a 
zero magnetic field, so that triple correlations, and thus the dynamics of the 
turbulence (Batchelor 1959), may evolve. At time t = t,, we ‘switch on’ the 
magnetic field B,. (For a discussion of whether this is possible in physics, see 
Moffatt 1967.) This field is kept constant during t, < t < t,, and during this time 
we study the turbulence as influenced by the Lorentz force. Finally, during 
t ,  < t < t ,  the magnetic field is again zero, and we investigate the eventual return 
to isotropy. The individual experiments differ in the size of B, during t ,  < t < t,. 
I n  terms of N at t = t,, we consider N M 0, 1, 5 and 50, and a few results for 
N M 2. We then repeat each run as before, except that all nonlinear terms in the 
Navier-Stokes equations are set to zero for t 2 t,. These ‘linear’ results are 
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compared with the full ‘nonlinear’ cases, to check the validity of linearized 
theories. 

In  addition to the velocity statistics we consider the pressure fluctuations. 
Since the divergence of the Lorentz force is not generally zero, a pressure field 
p 1  (x, t) is induced as well as the pressure field p 2  (x, t ) ,  which is a consequence of 
the convective terms and the equation of continuity. Por large N ,  the p l  fluctua- 
tions can be much larger than those of p 2 ,  and might cause mechanical problems 
for the surrounding container. Like the Lorentz force, the p 1  field is a linear 
function of the velocity field. It is therefore relatively simple to evaluate the 
pressure-strain correlation for this pressure. The pressure-strain correlation 
must be known if phenomenological turbulence models (see e.g. Reynolds 1973) 
are to be applied to this problem. With regard to the p 2  field, this correlation has 
been studied numerically by Schumann & Patterson (19763) and Schumann 
& Herring (1976). We shall see, however, that the results of those studies are 
not applicable to the present problem, without change. A complete understanding 
of all physical aspects of the present problem for homogeneous turbulence 
is necessary before e.g. a channel flow can be attacked or turbulence models can 
be designed. It is possible that the latter would be unsuitable for modelling the 
total flow, but entirely acceptable as subgrid scale models (Schumann 1976) 
within direct numerical simulations of the energy-containing scales of the flow. 

The present approach suffers from certain essential limitations, however. 
The main examples are statistical uncertainties (Schumann & Herring 1976), 
departure from isotropy in the initial state (Schumann & Patterson 1976a), and 
limited resolution in wavenumber space. The first two are of minor importance 
(since most results are of a comparative nature and all runs are started from 
identical initial conditions) ; and they would completely disappear if we were to 
take averages over several statistically equivalent runs. This possibility is 
virtually eliminated because of the long computing time needed for a single run 
(about 18 min on a Control Data 7600). The limited resolution is important’. As 
stated above, the Reynolds number is limited by the high-wavenumber cut-off 
(unless we use subgridscale models). An inertial subrange (Batchelor 1959) does 
not exist for the value Re, M 60. The low-wavenumber cut-off (a consequence of 
the limited box size Lbox) also becomes important, especially if the state of the 
turbulence is ‘nearly’ two-dimensional, since we are unable to resolve the very 
long waves in the n direction (which are the least-damped). Also, the coarse and 
rectangular distribution of discrete wavenumber vectors limits the angular 
resolution, which becomes important for large departures from isotropy 
(Schumann & Herring 1976). With respect to resolution, the results are most 
accurate for small values of N .  

2. The basic equations 

Lorentz force F (per unit mass), are 
The Navier-Stokes equations for the velocity field u(x, t) ,  including the 

a 
- U  = q-Vp+F+VV‘U, V . U  = 0 (Sa,b)  at 
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(Batchelor 1959). Here, 

is the total kinematic static pressure, and 

P k  t )  = PI (x, t )  +PZ (x, t )  

q =  -(u.V)u (Ec) 

F = (qlrO)(j x B) (9) 

j = cr(E+u x B) (10) 

is the inertial forces vector. The Lorentz force is 

(Roberts 1967). Prom Ohm’s law, the electric current j is 

(Roberts 1967). E is the electrical field. For Rm < 1, the magnetic diffusion is 
large compared with the convective and local changes of the magnetic field, and 
its fluctuations b(x, t )  around the imposed value B, are, therefore, small. In  this 
case, Maxwell’s non-relativistic equations reduce (Roberts 1967, 52.2) in a 
first approximation to 

B(x, t )  = B, + b(x, t )  M B,, (11) 

O=Vx(uxBo)+~VZb,  V.b=O, (12) 

j =p,-lVxb, E = -V@. (13), (14) 

CD is a single-valued electrostatic potential, w&h satisfies 

V’CD = V.(uxB,) (15) 

(as a consequence of (10)-(14)). We easily verify that (10)-(15), together with 
proper boundary conditions, determine F implicitly, and note that F is linear 
in u. 

With periodic boundary conditions and the Fourier transformation (3), we 
have in Fourier space 

(16) 

k.Q(k,t) = 0. (17) 

d -Q(k,t) = fi-ik@+F-vk2fi, 
dt 

(All transformed quantities are denoted by a circumflex.) The nonlinear term 
$(k, t )  is computed as in Schumann & Patterson ( 1 9 7 6 ~ ) .  (Asmall change in the 
notation is introduced for convenience.) The transformed Lorentz force in wave- 
number space can be given explicitly: 

(18) 
c r l  

F = --- [k x (k x (0 x B,))] x B,. 
P k 2  

n = B,/IB,I = ((4% I),  
In  the following we assume 

n 

so that, using (17), the components of F are 
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The pressure 
dfi(k, t) /dt.  Using (17), after some algebra, we get 

is eliminated by twice taking the cross-product of k with 

[ 5: (”‘ k)2] k20(k, t ) .  (20) 
d 1 
-9(k,t) = --[kx (kxG(k,t))]- ~f-7 
at k2 

This shows the known result that the magnetic field B, increases the effective 
viscosity (Lehnert 1955; Moffatt 1967; Moreau 1968; Kit & Tsinober 1971). 
This increase is dependent on k, however, and thus anisotropic. The enhanced 
effective viscosity causes increased damping. This means that energy is taken 
out of the velocity field and put into the magnetic field b, where it is in turn 
dissipated in Joule heat. (Comparison of (18) or (19) with (20) shows that the 
physics would be different for a compressible fluid. The Lorentz force F does not 
influence the n component of the velocity directly. Rather, it does so by means 
of the pressure field pl.) Taking the dot product of k and dfi/dt (equation (le)), 
using (17), (18) we get 

. CJ (k.  B,) (9. B,) 
$,(k,t) = -2 . -  

P k2 3 

.k.$ 
$2(k,t) = -%- 

k2 a 

Turbulence is described most simply in terms of statistical mean values. The 
second-order ensemble mean moments of fi are 

Bij(k, t )  = (ai (k, t)aj ( - k, 8 ) ) .  

They represent the Fourier transform of (ui (x, t )  uj (x + r, t)) with respect to the 
separation r (Batchelor 1959). From (16) we find 

All correlations on the right-hand side are of the form 

(-4 (k, Wj ( - k, t) +2j (k, qai ( - k, 0 )  

{Fi j ,  @ij, &j> $ i j ,  &j}, 

with 

for 

which we call inertial energy transfer, nonlinear pressure energy transfer, linear 
pressure energy transfer, forcing, and viscous dissipation, respectively. The total 
nonlinear energy transfer is Tj, = ri3+Qij, and the total effect of the magnetic 
field in an incompressible fluid is the ‘magnetic’ or Joule dissipation 

Bi = {gi, - ikij32, ik, fjl, -Pi, uk2 0,) 
A h  

h A h  

which is non-negative for i = j. Later we shall report results for some of these 
quantities summed over spherical shells (k - @,,, < Ikl < k + +k,,,). These 
terms are distinguished by the parameters (k, t )  or (k, t ) .  Also, the values i = j = n 
are used for components in the n direction and i = j = p for any perpendicular 
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component. If we sum the terms appearing in (23) over all wavenumbers k ,  we 
obtain the real space ‘energy’ tensor 

and similarly the viscous and magnetic dissipation tensors edj and ,uij and others. 
Using the summation convention for repeated subscripts i ,  j and Ic ,  but not for 
p or n, further definitions are 

C‘ = -@&/(E*AE), AE = +(2E33-E11-B22).) 

These quantities we caIl the total energy, and the total viscous and magnetic 
dissipation; r.m.s. velocity and integral length scale; Taylor microscale and 
Taylor-scale Reynolds numbers; skewness; and Rotta’s (1951) return-to- 
isotropy rate C’, and energy difference. The summations X are over all wave- 
numbers k retained in the model. 

3. Kinematics of the magnetic dissipatiop 
In  this section we present results that are consequences of the assumed initial 

isotropy and incompressibility. We discuss the evolution of the energy spectrum 
and the linear pressure fluctuations, neglecting nonlinear terms. With respect 
to the former, the essence of this linearized theory is not new (Lehnert 1956; 
Moffatt 1967; Moreau 1968; Kit & Tsinober 1971), but it is of great importance 
in interpreting the results. In  particular, we stress that the magnetic dissipation 
causes not only an angular anisotropy, but also differences in the spherically 
integrated energies Bij (k ,  t ) .  (Here, we assume a continuous energy distribution 
in wavenumber space.) For isotropic turbulence we have 

(Batchelor 1959). Let k = {kl, k,, k3} be expressed in spherical co-ordinates 

k = (sin 8 sin #, sin 8 cos #, cos 8>k. ( 2 7 4  

4 is the azimuthal angle around n; and 8 represents the angle between n and k,  
so that 

Then, we have 
cos8 = k.n/ lkl .  (27 b )  

(28a) 

(28 b )  

8,, (k ,  t )  = 8,, (k ,  t )  = U(k ,  t )  sin2 8, 

ggp (k, t )  + (gI l (k , t )  +BZ2(k,  t ) )  = U ( k ,  t )  (++ Q ~ 0 ~ ~ 8 ) .  

This angular distribution is depicted in figure 1, which is a polar plot; it can also 
be interpreted as the plot of iso-energy lines (contours) if we assume U ( k )  N k-l. 
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A 

FIGERE 1. Schematic polar plot of the angular distribution of energy E and magnetic 
dissipation j2 in a plane containing the axis n of symmetry for the isotropic initial state 
and at  later times. The distributions are mirror-symmetric with respect to n and p (any 
axis perpendicular to n). 

The form of the contours (and, thus, any statement about the angle of that 
region which contains more than, say, the average magnetic dissipation: 
Moreau 1968) changes if we change the assumed function U(k) .  The vanishing 
value of Bnn near n is a consequence of the fact that k.G = knan = 0 for k = n, 
but k > 0. 

The magnetic dissipation f i i j  is proportional to @ucos213, and its angular 
distribution (as shown in the lower part of figure i)  is therefore different for 
i = j = n and i = j = p .  Neglecting other contributions to aBij/at, this magnetic 
dissipation causes a reduction of Bij, so that after some time 

1 Bij (k , t )  = U(k ,O)  ( aij-- '2) exp[ -2-~itcos213 tr . 
P 

Such an evolution for finite values o f t  is illustrated in figure i by the dotted 
curves. We see that energy is dissipated mainly near the axis n and more for 
gPp than The turbulence is no longer isotropic rather than axisymmetric 
with respect to the axis of symmetry n. For t + co, the energy is totally dissipated 
everywhere except for 13 = 90". In  this state, the remaining flow field is inde- 
pendent of the n co-ordinate and, therefore, we have a two-dimensional state. 
This effect is best illustrated by the mean-square velocity gradients in n direction 
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These, and similarly the pressure gradients ((ap/8x,)2), approach zero. We note, 
however, this does not imply that the velocity component in the n direction is 
zero. On the contrary, we find, for the spherical integrals, 

8 n n  (k, w ) / B p p  (k, a) = 2. (31) 

The Lorentz force (see (19)), the induced linear pressure fluctuations p l ,  and the 
magnetic dissipation would also go to zero. 

This elimination of the magnetic dissipation, however, raises the question of 
whether this two-dimensional state can really be reached, since this requires that 
the nonlinear terms go to zero faster than the magnetic dissipation. It may be 
that we attain only a ‘quasi-two-dimensional’ state (Kit & Tsinober 1971), where 
all gradients in the n direction are sufficiently small only with respect to some 
ad hoc measure. 

For any, say Xij (k, t ) ,  of those tensors appearing in (23), we obtain the spherical 
integral from 

with k as given in (27) (Batchelor 1959). This integration results for the initial 
isotropic state in 

$ij (k) = (89% 4)&E^(k) c m p ,  

$ij (k) = (10,10,O)&fi(k) q p ,  

$i j (k)  = (-2, - -2 ,4 )&B(k)~~B; /p .  (35) 

(33) 

(34) 

Here, the bracketed values correspond to the diagonal components 

i =j = (1,2,3),  

respectively; the off-diagonal components are zero. Equation (35) can be ex- 
pressed in the generalized form 

with 
(36) 

(37) 

Equations (36), (37) are equally valid for the integrals over all wavenumbers, 
q5ij and $ij. The form of (36) is the same as that proposed for other types of pres- 
sure-strain correlations (as for the pressure fluctuations induced by shear or 
buoyancy: see e.g. Launder 1975). Equations (36), (37) might therefore be at 
least approximately valid for cases where Rm z 1 and for small deviations from 
isotropy. In  fact, if Rm < 1 and the resultant anisotropy is as described by (29), 
for the limit (v/p)o)B;t -+ co we find a value C, = &. This deviation from the result 
(37) is of minor importance, since the magnitude of the g i j ( k )  goes to zero in the 
same limit. The spectrum 

p ;  (k ,  t )  = ( A  (k, t)@l( - k,  $1) (38) 

is sin2 0 cos2 8, (39) 

(40) so that 
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An energy spectrum appropriate (Schumann & Patterson 1976a) for moderate 
hydrodynamic Reynolds numbers is 

g(k, t )  = 16(2/n)b2(t)Ic;5k4 exp [ -2(k/kp)2]. (41) 

kP is the wavenumber for which e ( k ,  t )  takes its maximum (‘peak’). From this 
spectrum we find, after integration over all Ic, for the integral length scale 
defined in (25), 

for the r.m.s. pressure (pl) fluctuations, 

L = (2n)+/kp; (42) 

€or the total magnetic dissipation, 

p = (v/p)B:v2; 
for the total viscous dissipation, 

15n v2 
6 = -v--‘ 

2 L2’ 

(44) 

(45) 

and thus for pic, a ratio which has the form of the square of the Hartmann 
number Ha, 

The result (44) is independent of the shape of the energy spectrum @(k). The 
values of PI, p and Ha approach zero for large values of (v/p)Bit in the linear 
approximation. 

4. Numerical experiments 
4.1. SpeciJication 

The general ‘ experimental ’ procedure was described in 9 1. The method integrates 
(20). The initial condition is a realization of a random Gaussian velocity field with 
an energy spectrum as given in (41). The parameter IC, is chosen such that 

Icp/kmi, = 3, i.e. LboX/L = 3(2n)*, 

and kmax/kp = 5.185. 

This value of Icp is larger by a factor of 1.26 than that used by Orszag & Patterson 
(1972) to enhance the resolution of the energy-containing region and to reduce 
statistical uncertainties. (The latter are large if the energy-containing region is 
resolved with too few wavenumbers.) It is, however, smaller than the kp value 
used by Schumann & Herring (1976) to reach a higher Reynolds number. The 
initial value of uo = v(0) is set arbitrarily a t  ZI,, = 1. The time integration is done 
in finite time steps At = O~02/(v01cmi,). The nonlinear terms are treated by the 
second-order leapfrog method, together with a first-order Euler step (see Lilly 
1965) every twentieth time step, to suppress numerical oscillations. The linear 
terms are accounted for by a factor 

exp [ - (vk2 + (cr/p)BE cos2 O)At]; 
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FIUTJRE 2. Integral-length-scale Reynolds number ReL (-) and Taylor-scale Reynolds 
number R ~ A  (---- ) against normalized time for different values of the magnetic inter- 
action number N .  The magnetic field is zero outside t ,  < t < t,. 
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FIGURE 3. Skewness coefficient S against time for different values of the 
magnetic interaction number N .  

this gives exact results if the nonlinear terms are absent. The viscosity v is chosen 
to be v = 0.016 wO/kmin, which implies initial Reynolds numbers Re,  = 59.7 and 
Re, = 43.0. The time behaviour of both is plotted in figure 2. The first 20 time 
steps (0 < t < t l )  are integrated with zero magnetic field. During this time, the 
nonlinear energy transfer evolves as measured by the skewness factor 8. (See 
figure 3.) It appears from the simulations that 

L(O)/L(t,) = 1.002 and w(O)/w(t,) = 1-052. 
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In  the following, all results are scaled with 

L, 3 L(t,) and v1 = v(tl). 

The integral length scale L is taken instead of the more common Taylor micro- 
scale A, since the magnetic dissipation is controlled by the energy-containing 
region. In  these units, the times a t  which the magnetic field is switched on (t,) 
or off (t2),  and where the computations are terminated (t3), are 

(tl, t2, t3) = (0-392,1*176, 1.961)Ll/v1. 

During the time interval (t,, t z )  the value of uB@ is set to (0,1,2,5, or 50) v,,kmin, 
which results in rounded values (0, 1, 2, 5, or 50) for the interaction number N 
as defined in (6) and computed with L = L, and w = w,. All cases are run twice, 
first with the full nonlinear method, and again with the linear part only (6 5 0 
in (20)). In  most of the following figures, nonlinear results are presented by solid 
and linear results by dashed curves. 

4.2. VeriJication of linear effects and implication of Jinite resolution 

Figures 6 1 0  illustrate the influence of the magnetic field, which is, in a first 
approximation, as expected from linear theories. (See 0 3.) 

The magnetic field initially increases the energy dissipation. This increase is 
apparent from the change in slope at t = t, in the energy ratio E(t)/E(t,) plotted 
in figure 4. The magnetic dissipation is plotted in figure 5. (In figures 5, 7, 8 and 
16, we give the magnetic dissipation outside (tl, t2) as if the magnetic field were 
present a t  all times.) Figure 6 shows the viscous dissipation e(t)/e(t,); and figure 7 
shows the ratio 

Ha2(t) = P(t)/€(t). 

We notice the sharp reduction of magnetic dissipation at  large values of N ,  which 
is a consequence of the large initial energy dissipation in the region near 8 = O", 
where most of the magnetic dissipation occurs. The region near 8 = 90" is less 
affected and the decrease in E(t) and ~ ( t )  is thus smaller. For large values of 
Ntv,/L,, the turbulence becomes insensitive to the magnetic field. In  figure 4 
we see that the cusp at time t = t,, which signals the eliminated magnetic dissi- 
pation, disappears for large values of N .  Consequently, the Hartmann number 
decreases, as shown in figure 7. Figure 8 shows the ratio 

Hu2(k, t )  = F ( k ,  t)/2(k, t )  

against time and wavenumber k. The magnetic dissipation dominates at low 
wavenumbers, whereas the viscous dissipation becomes more important a t  high 
wavenumbers. The decrease of Ha2@, t )  against time is, within the linear 
approximation, independent of k.  

The strong initial magnetic dissipation near 8 = 0" results in the transition to 
the two-dimensional state. The transition is evident in figure 9, which shows the 
mean-square velocity gradient of the up component in the n direction. This value 
is normalized so that it is unity for isotropic turbulence. The initial departure from 
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tVll-% 

FIGURE 4 
tV11-G 

FIGURE 5 

FIGURE 4. Normalized energy against time for different values of N .  ---, results of the 
nonlinear simulations; - - -, those of the linear simulations. 

FIGTJRE 5. Magnetic dissipation against time. Curves as in figure 4. The results are plotted 
as if the magnetic field would be constant a t  all times. Linear and nonlinear results are 
not distinguishable for N 3 6. 

%lL, 
FIGURE 6 

FIGURE 6. Viscous dissipation against time. Curves as in figure 4. 

FIGURE 7. Ha2 = ,u/e against time. Curves as in figure 4. The magnetic field is assumed 
to be as in figure 5. 
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FIQURE 8. Squared Hartmann number against wavenumber k and time t :  
Hu*(k, t )  = @(k, t ) / e (k ,  t ) .  

N = 6. The magnetic field is as in figure 6 .  The values of Haa at kL, = (1.4, 14.7) are 
Hua(t = t l )  = (96.4, 0.474) and H d ( t  = tz)  = (5.92, 0-219), respectively. 

0 0.4 0.8 1.2 1.6 2.0 

t V 1 l - h  

FIQURE 9. Normalized mean-square velocity gradient against time. 
Curves as in figure 4. 
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FIGURE 10. Ratio EnnlEPp agaihst time. Curves as in figure 4. 

unity is a consequence of the incomplete isotropy of the initial state. The tendency 
towards zero increases with N .  Similar results have been found for 

2((a~,/ax,)z)/{(au,/a~~)z) and for - ((~~z/ax,)z>/(a~z/a)2), 
but the tendency towards zero is strongest for the ratio plotted in figure 9. The 
weaker decrease of ( ( ~ ~ J i ? x , ) ~ )  is a consequence of the relatively small values of 
@,,(k) near 8 = 0". (See figure 1.) 

As predicted by the linear approximation, the ratio E,,/E,, grows when the 
magnetic field is increased. (See figure 10.) For large values of Ntv,/L, this ratio 
approaches the theoretical limit 2 as given by (31), at least if we neglect the 
nonlinear effects. 

Although the numerical procedure integrates the linearized equation (20) 
exactly, the result is not the exact solution for the physical problem, even if the 
equation could be linearized with impunity. This is because we use periodic 
boundary conditions on the sides of a cubic box of side length Lbox,  where Lbox 

has a constant finite value. Accordingly we have only a discrete set of points in 
wavenumber space, whereas we would need a continuous spectrum to describe 
an infinite domain. In  the simulations, the energy per mode represents the energy 
per volume kkin in wavenumber space, whereas in the continuum the energy 
is per infinitesimal volume dk. As a consequence of the finite resolution, the 
energy in the region 

{ - kmax < k, < &ax; - kmax G kz < kmax; - @mi, G ks < Skmin) 

is not affected directly by the magnetic dissipation. Therefore, if we neglect 
viscous dissipation and nonlinear energy transport, we never reach zero energy E. 
I n  fact, for large values of N we would finally reach a value that can be estimated 
from (41) to be 

(47) 
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This has the value 0.177 in the present simulation. This value corresponds to the 
resultant value E(t)/E(t,) found in figure 4 for N = 50 at that time when the 
largest change in slope appears (t 2 t l ) .  

Note that the idea of an infinite domain is irrelevant for practical problems. 
Even so, one should keep in mind that, for the present problem, we get zero 
measurable velocity fluctuations a t  the same time as we reach the two- 
dimensional state exactly. We must therefore be content with the quasi-two- 
dimensional state. 

Another implication of the periodic boundary conditions is that the angle 
between the plane k .  n = 0 and the adjacent modes a t  (kl, k,, kmin) is large for 
small values of k: + ki. In  fact, it  is 18.4" for k = kp but 3.7' for k = k,,,. This 
means that the magnetic dissipation includes a larger angular region a t  high 
wavenumbers than at low ones, which distorts the results slightly. 

Both resolution problems are of minor importance for small values of N .  The 
present results suggest that the accuracy is sufficient at least for N < 5, and for 
the time intervals considered here. 

4.3. Nonlinear effects 

I n  three-dimensional turbulence, the nonlinear inertial and pressure forces 
produce an energy exchange between the different Fourier modes, until an 
isotropic equilibrium state is reached, where gij (k, t )  assumes the same value 
for all k and i = j. This is therefore also called the equi-partition state. In  it, the 
energy spectrum is B ( k )  N k2. In  reality, we never reach this spectrum, because 
of viscous dissipation at high wavenumbers. However, for model turbulence in a 
system with zero viscosity and with a finite truncation wavenumber kma,, this 
spectrum was found by e.g. Orszag & Patterson (1972). The departure from the 
equilibrium state at high wavenumbers, to smaller energies, 2auses i%ertial 
energy transfer from low to high wavenumbers, as measured by T ( k )  = $rit(k). 
This transfer function becomes negative at low and positive a t  high wave- 
numbers, while its integral is zero, since the inertial transfer is energy-conserving. 
This shape implies positive values of the skewness S, defined in (25) and depicted 
in figure 3. Special considerations are necessary for two-dimensional turbulence. 
(See below. ) 

The magnetic dissipation @(k) would not change the equilibrium energy 
spectrum g(k) N k2, since it acts equally at all scalar wavenumbers k. Therefore, 
we cannot expect an increase of S if N is increased. The magnetic dissipation 
does, however, produce a departure from isotropy, and thus from equilibrium, 
both with respect to the angular energy distribution, and with respect to the 
energy partition between the components i = j = n and i = j = p .  The tendency 
of the nonlinear energy transfer to restore the angular equilibrium has been 
verified by e.g. Schumann & Herring (1976). This restoration implies an angular 
(8) variation of the inertial energy transfer fii(k(8)), which can be measured by 

with cos0 as defined in (27b) .  In  the present situation, fii(k(0)) should be 
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FIGURE 11. Angular ‘skewness coefficient ’ against time. 
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FIGURE 12. Rotta’s return rate C‘ against time for N = 6 .  0, numerical results; 
- _ -  , expected function; -, numerical results. 

negative near cos2 8 = 0 and positive near cos2 8 = 1 ; and accordingly we expect 
a positive value for 8,. Figure 11 shows the values Se(t) as found numerically. 
There is a small tendency to negative values initially, which is probably a con- 
sequence of initial anisotropies, since it is found even for N = 0. Otherwise, we 
see the expected increase with N for N = 1,5.  The result for N = 50 shows that, 
in this case, the magnetic dissipation is strong enough to suppress nearly all 
angular energy transfer. 
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FIUTJRE 13. Rotta’s return rate C‘ against N .  The numerical 
results are for N = 2, 6 and 60 at t = t2. 
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FIGVRE 14. Energy spectra and energy fluxes in scalar wavenumber space. (See text.) The 
energy spectra scales are arbitrary. N = 1, t = t,. 
FIG- 15. Angular energy distribution and fluxes. (See text.) N = 1, t = t,. 
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The energy exchange between different velocity components and thus between 
the diagonal components of the energy tensor Bij is effected by the nonlinear 
pressure p z  as measured by the pressure-strain correlation Qij. This has been 
studied numerically by Schumann & Patterson (1976 b). The return to isotropy 
caused by (Dii can be measured by Rotta’s coefficient C‘, defined in (25). A typical 
result for C’(t) is shown in figure 12. The numerical results for this coefficient 
show large statistical errors because of the difference AE (see (25)), which is small 
compared with statistical fluctuations in Ei j  if the anisotropy is weak (Schumann 
& Herring 1976). Therefore, we cannot trust the numerical results for 
( t  - t l )  < Ll/v, and (t  - t z )  2 L,/vl. We see that the magnetic dissipation causes a 
reduced return-to-isotropy rate. From Schumann & Patterson (1976b) and 
Schumann & Herring (1976), we expect C’ M 1 for N = 0. (C’(t,) = 0, because 
the development of (Dij ( t )  takes a finite time ; see Schumann & Patterson (1976b). 
For large values of N ,  C‘ is virtually zero. (See figure 13.) 

To exEmplify the relative importance of these three types of energy transfer 
(Fii(k), Fii(k(0)), (Dij), we give their values for a specific example (N = 1, t = tz) 
as a percentage of (pii+eii) in figures 14 and 15. Figure i 4  shows the energy 
spectra of gPP and Bnn. Each spectrum is divided in two regions (A,  B and C, D )  
at kL, = 3.79, which is slightly larger than the wavenumber of2he energy peak, 
but is otherwise arbitrarily chosen. By proper summation of rij(k,t) over the 
single regions, we compute the energy flux due to the inertial terms ( A  +B and 
C-t D), and similarly the flux produced by p2(C- tA,  D +B), and by viscous 
(+e) as well as magnetic (+p) dissipation. The actual energy content within the 
regions is given as a percentage of Eii by the circled numbers. From figure 14 we 
see that the inertial energy transfer is about one order of magnitude larger than 
the pressure energy transfer for this situation. Similarly, figure 16 shows the 
angular energy transfer. The angular regions are separated at  0 = 60°, so that the 
number of modes is equal in both parts. Here, we find that the relative magnitudes 
of inertial and pressure energy transfer are of comparable size. Both figures 14 
and 15 show, however, that the nonlinear energy transfer a t  this Reynolds 
number Re, is one to two orders of magnitude smalIer than the dissipation for 
N = 1.  This is even more true for greater values of N .  We expect, therefore, that 
the importance of the nonlinear terms is small, for the general flow behaviour, 
if N $  1. 

4.4. Comparison of linear with nonlinear results 
Comparing the results obtained for the nonlinear with those obtained for the 
linear simulations, presented in figures 4-7, 9 and 10, we see several changes 
caused by the nonlinear terms that are explainable in terms of the energy trans- 
fers discussed above. For example, in figure 6, we find a strongly intensified 
viscous dissipation, which results from the energy transfer from the energy- 
containing (low) to the dissipating (high) wavenumbers. One would expect a like 
increase of magnetic dissipation, owing to the angular energy transfer and to that 
from the n components to the p components; but the opposite effect can be seen 
in figure 5.  This discrepancy is explained by the fact that the transfer to high 
wavenumbers is greater than other types of transfer. (See figures 14 and 15.) 
The nonlinear terms thus result in strong viscous dissipation, which prevents an 

A 
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14.7 

FIUURE 6. Ratio of Hartmann numbers Ha*(lc, t ) /Ha2(k ,  2,) against wavenumber k an1 . 
time t for the nonlinear and linear simulation. (See remark on magnetic field in figure 5.) 
N = 5. (a) Nonlinear. (b )  Linear. 

increase of magnetic dissipation. We could expect enhanced magnetic dissipation 
if the energy spectrum were closer to the equilibrium state and if the Reynolds 
number Re, were much larger than it is in these cases. The total dissipation 
e + p  is always larger for nonlinear simulations than for linear ones, as illustrated 
by the steeper energy decay for nonlinear cases in comparison to  the linear 
results shown in figure 4. The linear simulations exhibit fairly constant values of 
Re,($) and Re,($) for N = 0 and t > t ,  (not plotted); these results are quite 
different from those obtained for the nonlinear simulations presented in figure 2. 

The influence of nonlinear terms is relatively strong with respect to the 
measures for the two-dimensionality shown in figures 9 and 10. Both figures 
reflect the return-to-isotropy tendencies produced by the angular inertia1 energy 
transfer (figure 9) and by its combination with the pressure energy transfer 
(figure 10). Additional information is given in figure 16, where the ratio 
Ha2(k, t ) /Ha2(k,  t l )  is shown in perspective graphs. This ratio is independent of k 
in the linear approximation and is even insensitive to the inertial energy transfer 
from low to high wavenumbers k, because such a transfer would change e and p 
by the same factor. The nonlinear results do reflect, however, the angular energy 
transfer. It follows from figure 16 that the latter is greater at high than at 
low values of k. 

Finally, we measure the importance of the nonlinear energy transfer effects by 
that time t* for which the difference between the results of the linear simulations 
and the corresponding results of the nonlinear simulation deviate by 3 yo of the 
latter. The value 3 %  is taken arbitrarily, but seems a reasonable value for 
acceptable errors. This critical time for different results is plotted in figure 17. 
We see that the shortest critical time appears for the viscous dissipation, which 
is strongly controlled by the nonlinear terms, independently of N .  A longer 
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FIGURE 17. Normalized time t* against magnetic interaction number N for different 
results; for t ,  < t < t * ,  the differences between the linear and nonlinear results are less 
than 3 yo. Curves are for results with respect to energy E ,  viscous and magnetic dissipation 
E and ,u and ratios of energies E,* and mean-square gradients Gu E ((aui/azj)2) (without 
summation) for different velocity components. 

congruence time t* is found, especially, for the kinetic energy; the errors with 
respect to the magnetic dissipation never reached the 3 % level for N = 50. 

4.5. Results for the pressure JEuctuations 

For r.m.s. values of nonlinear pressure fluctuations, the ratio (pt)*/v2 was found to 
be in the range 0.8-1.0 and fairly independent of time and of N .  So this value stays 
very close to the results found by Schumann & Patterson (19760) for purely 
isotropic turbulence. The ratio @'$/(c~B~vL/p) is initially about 0.2, as predicted 
by (43); it  approaches zero with increasing values of N .  At t = t ,  the resultant 
values are (0~1691,0*09396,0~00418) for the nonlinear cases and (0-1697,0.09993, 
0.00358) for the linear simulations with N = (1, 5, 50). At t = t,, the relative 
contribution <p:)*/ <p! +p:)* of the linear pressure fluctuations to the total 
pressure fluctuations is (0.17, 0.65, 0.99) for N = (1, 5,  50). These numbers even 
grow slightly with time during (t,,t2); thus, for N = 50, more than 99% of the 
pressure fluctuations are caused by the Lorentz force. These fluctuations are 
concentrated a t  rather small wavenumbers. (See (39) .) 

The ratio 3p?Jpkk shouldvary between 0.6 (refer to (37)) and 0.5, from the linear 
theory. The ratio controls the parameter C,, and thus the linear pressure energy 
transfer # J ~ ~ .  The results show mean values of the order of 0.6, but they also show 
relatively strong fluctuations, that are probably a consequence of deviations 
from isotropy in the initial state. The nonlinear pressure energy transfer, 
measured in terms of C', has been discussed above. 

4-2 
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FIG~JRE 18. Skewness coefficients S,, and X,, against time. 

4.6. Two-dimensional aspects 

Two-dimensional turbulence differs essentially from three-dimensional turbu- 
lence (Kit & Tsinober 1971; Leith 1968; Lilly 1971; Herringet at. 1974; Pleshanov 
& Tseskis 1973). I n  two dimensions, enstrophy (which is s/(2v)) cannot be created 
by nonlinear effects,A only destroyed by viscosity, implying zero integral en- 
strophy transfer X k2Fii(k, t ) .  Thus the skewness coefficient S( t ) ,  defined in (25),  
should go to zero when we approach the two-dimensional state. However, this is 
contrary to the results shown in figure 3. We find that the skewness stays nearly 
independent ,Of time and of N .  Closer inspection of the contributions of the single 
components Yii (k, t )  to  S shows that the invariance of S with N is the result of 
two counteracting effects. Figure 18 shows the two skewness coefficients S,, 

where the sum is taken over all wavenumbers k. The definitions are such that 
S = S,, + 2Spp. We find that S,, ( t )  goes to zero with increasing N .  At the same 
time, S,, ( t )  increases with N ,  however, so that S remains about constant. The 
conclusion is that, for a quasi-two-dimensional turbulent flow, the velocity 
components in the plane k .  n = 0 behave as expected from two-dimensional 
turbulence theories; but the normal component does not. In  the limit to pure 
two-dimensionality, the Navier-Stokes component for u, reduces to that for a 
scalar quantity, since 

and its transport towards high wavenumbers is non-zero. A consequence of this 
result is demonstrated by figure 19, which shows the ratio grin (k, t)/,@pp (k, t ) .  
I n  the linear approximation with isotropic initial conditions, the latter cannot 
become larger than two, as found in (31). The nonlinear results show, however, a 
peak value of (1.41, 1.82, 3.71, 11.3) for N = (1,2,5,50) at t = t,. On the other 
hand, this ratio is decreased by the nonlinear terms at low wavenumbers. 

au,/ax, = aplax, = 0, 
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(b) 

A A 

F I G ~ L E  19. Energy ratio E,,,(k, t)/E,,(k, t )  against wavenumber k and time t .  
N = 5.  (a) Nonlinear. ( b )  Linear. 

Another property of two-dimensional turbulence is that energy is transported 
partly from moderate to low wavenumbers, and thus increases the integral length 
scale L. This property is reflected by the results for Re,(t) shown in figure 2; 
the Reynolds number becomes larger for N = 50 than for N = 5, after some time. 

Finally, we report some results that characterize the final two-dimensional 
state at  t = t ,  for N = 50. For this purpose, we compute all statistics for the 
p components with k . n = 0 only. For the integral and micro-Reynolds numbers 
RL and R, and for the two-dimensional skewness 8,, we find the values R, = 7.3, 
R, = 1.34 and S, = 0-24. These quantities have been defined by Herring et al. 
(1974), using the same nomenclature. The skewness 8, is a measure of the 
enstzophy transport from low to high wavenumbers and proportional to 
X k4Fii(k, t ) .  We see that the Reynolds numbers are much smaller than those 
reached by Herring et al. (1974), a consequence of the smaller resolution of this 
plane. Whereas in Herring et al. (1974) an 128 x 128 grid was used, the present 
results correspond to only a 32 x 32 grid. In  view of the much smaller resolution 
and Reynolds number, the present result S, = 0.24 is not too far away from the 
result S, 0.4 in Herring et al. (1974). The general behaviour of S,(t) is plotted 
in figure 20, which shows that S, is much larger when the modes Q(k, t )  at 
k . n  $: 0 are not all zero. 
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FIGURE 20. Two-dimensional skewness coefficient 8, as defined by 
Herring et al. (1974) against time. 

4.7. Critical interaction and Reynolds numbers 

We are looking for an estimate for that critical value N, of N for which the 
magnetic dissipation is strong enough to prevent a return from the two- 
dimensional to the three-dimensional state. For this purpose we determine the 
minimum value of crBi(t)/p that makes dBij(k, t) /dt  zero or negative for all k 
with k .  n -+ 0. This value is found from (23), (24) by use of the computed results 
for Pij, 6ij and eii (k, t ) .  Because these values are determined from the velocity 
field by averaging over rings around the axis of symmetry n only, the results 
exhibit large statistical errors. The values 

N ,  ( t )  = (t)Ll/(Pl) 

are presented in figure 21. Figure 22 contains similar results for the minimum 
viscosity v, ( t )  or for the critical Reynolds number 

Re, ( t )  = % - w c  ( t ) .  

The results show a steady decrease of N, and Re;l for N = 0,1,5,  and against 
time, as a consequence of the damped nonlinear terms. Some anomalies are 
found for N = 50. Here we get a very large critical value Reg1 if we consider the 
component Bnn (k, t )  alone, whereas that for the p components is much smaller. 
This again is a consequence of the large energy transfer for the n component. 
The differences between the n and p components have been found to be within 
the statistical uncertainties with respect to N,. However, the value N, is 
significantly larger in this case than for N = 1 and 5, especially near t = t,. So 
the instability of the resultant quasi-two-dimensional state increases when we 
approach pure two-dimensionality. Typical results are N, z 50, Re, z 30. 
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FIGURE 21. Critical magnetic interaction number N, against time. Numerical results are 
represented by the different points. Curves are estimated fits. 

N :  0, 0; +, 1; X ,  5 ;  0, 50. 
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FIGURE 22. Critical normalized viscosity v, = Re;' against time. The points and curves are 
as in figure 21. For N = 50 the results are shown for the n and p components separately. 

N 0 1 5 50 

n P 
0 + X H 



56 U .  Xchumam 

5. Concluding discussion 
The transition from three- to two-dimensional turbulence under a uniform 

magnetic field has been simulated numerically. The direct spectral simulation 
method of Orszag & Patterson (1972) has been found to be applicable for this case. 
Since the transition is best understood in wavenumber space, this scheme seems 
to be more appropriate than e.g. a finite-difference simulation in real space. 
Also, the spectral method gives exact results with respect to the linear evolution 
for the given boundary conditions. The discrete resolution in wavenumber 
space implied by the finite box size, however, introduces important departures 
from continuum behaviour. One could, perhaps, design a spectral code with 
varying values of the box side lengths in different directions, and as a function of 
the turbulence evolution; but this would require drastic changes in the method, 
and has accordingly not been elaborated. 

The finite resolution would be also a problem if analytical turbulence theories 
were used. Schumann & Herring (1976) showed for the direct-interaction 
approximation of Kraichnan (1964) and Herring (1974) that the description 
of angular anisotropy is an important problem of the numerical procedure 
that describes the angular variation in terms of a few Legendre moments. For the 
present case with statistically unidirectional forces (and also in other similar 
situations, such as those in which buoyancy forces occur), the results of 
Schumann & Herring (1976) are even more striking. One could perhaps resolve 
that difficulty in this special case, using the linear solution (22), and describing 
only departures from it in terms of Legendre moments. 

The linear results are as expected from linearized theories. We stressed the 
different kinds of anisotropies and the resultant pressure fluctuations. In  par- 
ticular, we found highly intensified pressure fluctuations, and deduced a relation- 
ship for the pressure-strain correlation resulting from the Lorentz force 
(equation (36)). 

The nonlinear simulations show that the linear theories are applicable (within 
3 % error) for times (t - tl) < yL,/vl (as suggested by Moffatt 1967). The factor y 
is of the order 0.2 and, thus, smaller than estimated earlier (Moffatt 1967); it  is, 
however, dependent on the quantity one is interested in, and on the value of the 
interaction number N as shown in figure 17. The nonlinear terms produce energy 
transfer from low to high wavenumbers, angularly out of the plane k .  n = 0 into 
the region near the axis n, and between the different velocity components. The 
first transfer is usually much larger than the two others, especially when we reach 
the quasi-two-dimensional state. In  the latter situation, there is also some energy 
transfer towards low wavenumbers, but only with respect to the velocity com- 
ponents in the plane k . n = 0. In  spite of these nonlinear energy transfers, the 
magnetic dissipation can be strong enough to cause at least a quasi-two-dimen- 
sional state; a purely two-dimensional state does not seem to be possible for 
decaying turbulence. The size of the critical interaction number N, is of the 
order of 50. This result stems from a rather crude stability analysis; N, is certainly 
dependent on Re, and possibly on other parameters. From the nonlinear results, 
we fmd that the anisotropies introduced by the magnetic field are not negligible 
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even for N = 1. The value Nmin below which they are sufficiently small can be 
estimated to be of the order of 

Perhaps the most surprising result is the behaviour of the skewness coefficient 
8, which is a measure for that energy transfer which increases the viscous 
dissipation rate. This coefficient was expected to go to zero, but for quasi-two- 
dimensional turbulence it was found to stay fairly constant. (See figure 3.) In  
fact, the nonlinear transport of energy g,, of the velocity component normal to 
the pIane k. n = 0 becomes much larger than that of the components (gPP) in 
the plane of the final two-dimensionality. (See figure 19.) This result is relevant 
to turbulence models for the atmosphere : large-scale atmospheric turbulence is 
like the quasi-two-dimensional state we study here. The invariance of the total 
skewness suggests that atmospheric turbulence is perhaps better described in 
terms of three-dimensional than two-dimensional turbulence models. 

The magnetic dissipation is large compared with the viscous dissipation only 
in the energy-containing region. Moreover, the nonlinear transport effects that 
cause a return to isotropy are large a t  high wavenumbers. We might, therefore, 
use the subgrid scale model approach (Schumann 1975) to extend the present 
results to higher Reynolds numbers Re,. In  this approach, only the energy- 
containing scales are simulated directly, and turbulence models are used to 
describe the fine-scale turbulence, which cannot be resolved on our present 
computers. In  a first approximation, these models do not even have to account 
for the anisotropies introduced by the magnetic field, at least for N 5 5. This 
approach would allow investigation of the changes in friction and heat transfer 
in channel flows caused by the uniform magnetic field. 

This paper was presented at the Twelfth Biennial Fluid Dynamics Symposium 
on Advanced Problems and Methods, 8-13 September 1975, Bialowieza, Poland. 
The work was done while the author was on leave with the Advanced Study 
Program of the National Center for Atmospheric Research, Boulder, Colorado, 
which is sponsored by the National Science Foundation. 
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